
IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

A Steganographic Embedding Undetectable by

JPEG Compatibility Steganalysis?

Richard E. Newman1, Ira S. Moskowitz2, LiWu Chang2

and Murali M. Brahmadesam1

1 CISE Department
University of Florida

Gainesville, FL 32611-6120
USA

nemo@cise.ufl.edu

&
2 Center for High Assurance Computer Systems, Code 5540

Naval Research Laboratory
Washington, DC 20375

USA
moskowitz@itd.nrl.navy.mil

Abstract. Steganography and steganalysis of digital images is a cat-
and-mouse game. In recent work, Fridrich, Goljan and Du introduced
a method that is surprisingly accurate at determining if bitmap images
that originated as JPEG �les have been altered (and even specifying
where and how they were altered), even if only a single bit has been
changed. However, steganographic embeddings that encode embedded
data in the JPEG coe�cients are not detectable by their JPEG com-
patibility steganalysis. This paper describes a steganographic method
that encodes the embedded data in the spatial domain, yet cannot be
detected by their steganalysis mechanism. Furthermore, we claim that
our method can also be used as a steganographic method on �les stored
in JPEG format. The method described herein uses a novel, topological
approach to embedding. The paper also outlines some extensions to the
proposed embedding method.

1 Introduction

Steganography and steganalysis of digital images is a cat-and-mouse game. Ever
since Kurak and McHugh's seminal paper on LSB embeddings in images [10],
various researchers have published work on either increasing the payload, im-
proving the resistance to detection, or improving the robustness of stegano-
graphic methods [1, 15, 21, 22]; or conversely, showing better ways to detect or
attack steganography [5, 7, 23]. Fridrich, Goljan and Du recently raised the bar
for embeddings in the spatial domain with the introduction of their \JPEG com-
patibility" steganalysis method, which is very precise at detecting even small

? Research supported by the O�ce of Naval Research.

green
Text Box
NRL Release Number 02-1221.1-1105

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

changes to bitmap images that originated as JPEGs [6]. This paper presents a
steganographic embedding that encodes the embedded data in the spatial do-
main (bitmap) by manipulating the image in the frequency domain (the JPEG
coe�cients) (and in fact, the stego image may be stored either as a bitmap or as
a JPEG). Due to this, the embedding cannot be detected by JPEG compatibil-
ity steganalysis. However, in order to elude other means of detection (either by
human inspection or statistical tests), we found it necessary to introduce notions
of topology. This, we believe, has larger implications.

Often, one is called upon to perform steganalysis on the uncompressed, spa-
tial realization (from, e.g., a TIFF, BMP, or PNG �le) of an image (i.e., its
bitmap). Eggers, B�auml and Girod [4] assert that \...uncompressed image data
looks to Eve as suspicious as encrypted data. Thus, the steganographic image
r has to be always in a compressed format." However, many small images are
stored in bitmap format without compression, and larger images may be stored
with lossless compression. Also, steganography can be used to store data on a
local disk without placing it on a website or sending it through email, in which
case there are many instances in which uncompressed formats may be found.
A user may choose to store passwords or other secret information in her local
image �les in a way that she can recover them but another might not even know
that they were there at all. In many cases, na��ve users will transfer data in ar-
bitrary formats. Even sophisticated users may �nd that their recipients do not
have software compatible with the format of choice, and so either send an al-
ternative format or provide a choice of formats (much as websites often provide
both postscript and PDF versions along with a compressed version of a docu-
ment). Further, Eggers et al. earlier posit that Eve should consider any natural
image data as suspicious, given its ability to hide a considerable amount of em-
bedded data. However, they concede that this at the very least makes the �eld
less interesting, and we contend that transmission of all sorts of images in every
conceivable format over the Internet is likely to continue, with the mix mostly
consisting of innocent images. Therefore, it is still incumbent upon the stegan-
alyst to detect which images are innocent and which are suspicious on the basis
of something other than their format alone; that is, we discount \cover format
pro�ling."

A common steganographic method for modifying such images is replacing
the least signi�cant bits (LSBs) with the embedded information [8, 10, 12]. Since
the image is stored in a lossless format, there is much redundancy of which
steganographic methods can take advantage. Although steganographic methods
that replace lower bit planes in the spatial domain are easily detectable by
statistical tests, steganographic methods that a�ect the lower bit values of only
a small percentage of the pixels (e.g., [17]) are extremely di�cult to detect (e.g.,
[16]) by statistical means. However, if the image was at one time stored as a
JPEG, the artifacts of the quantization of the DCT coe�cients remain in the
spatially realized bitmap. Leveraging this fact, JPEG compatibility steganalysis
may detect even such minuscule tampering of the bitmap derived from a JPEG.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

With this in mind we feel that it is important to come up with a way of
\tricking" such steganalysis tools, and thus allow a modest amount of informa-
tion (payload, e.g. [15]) to be embedded in the spatial realization of a JPEG,
without detection. This paper presents one such method.

Fridrich, Goljan and Du never stated or implied that their method could not
be evaded. The beauty of their steganalysis method is that it shockingly showed
how small deviations in the bitmap of a JPEG could be detected. We show in
the body of this paper that our method will not be detected by the JPEG com-
patibility method of Fridrich et al. We also believe that for small payloads our
method with simple extensions will not be detectable by any other existing ste-
ganalytical tools. A priori our steganography is performed in the spatial domain,
that is, the data are embedded by encoding in the spatial domain, but since the
changes actually come from adjusting quantized DCT coe�cients our method
a fortiori can actually use JPEG �les (i.e., an image saved in the JFIF format
as a .jpg) as the cover/stego �le. Our method is a hybrid in that it encodes the
embedded data in the spatial domain via JPEG coe�cient manipulation; this
is why it is resistant to detection using either spatial or frequency steganalysis
techniques.

Marvel et al. [14] propose a simple means of storing one bit per block in
the quantized JPEG coe�cients. Although this bears some surface resemblance
to the work given here, the embedded data are stored in the JPEG coe�cients
themselves, and it is required that the receiver have them in order to extract
the embedded data. In the method presented here, the data are encoded in the
spatial domain, albeit through manipulation of the frequency domain, and the
receiver must have the spatial domain realization of the image in order to extract
the embedded data. In our baseline system, the receiver must also generate the
topologically nearby spatial blocks in order to determine whether the block in
question actually encodes data or is unusable. In follow-on work, this requirement
is eliminated.

Another contribution of this paper, and perhaps an even more important one,
is that we introduce a topological approach to steganography. We attempt to
formalize what it means for one image (or part of an image) to be near another
image (or part of an image). The obvious upshot of this is that the stego image
will be indistinguishable from the cover image (by either human or machine).

Section 4 presents a baseline, proof-of-concept version of our method of hiding
in the bitmap (spatial) realization of a JPEG �le that is not detectable by the
method of Fridrich et al. [6]. Our method makes use of the topological concept
of \closeness," which is formalized along with a generalized form of our method
in section 5. Extensions are discussed in section 7, with results in section 6 and
concluding remarks in section 8. Section 3 presents and analyzes the method of
Fridrich et al. and see that it can be \tricked," provided you retain qualities that
a legitimate JPEG should have in the spatial domain. In order to appreciate the
method of JPEG compatibility steganalysis of Fridrich et al., and to understand
our way around it, it is necessary to have a basic understanding of how JPEG
works. Section 2 presents a brief discussion of JPEG for completeness.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

2 JPEG Basics

JPEG [19] �rst partitions a bitmapped image (such as one might obtain from a
CCD camera or a scanner) into 8 by 8 blocks of pixels, starting with the top,
leftmost pixel. Generally, the pixel values are constrained to one or a few planes
of one or a few bits (e.g., 8- or 10-bit grayscale, or 24-bit color). Each of these
64-pixel blocks (A in Figure 1) in the spatial domain is then transformed using
the Discrete Cosine Transform (DCT) [24] into the frequency domain, which
produces 64 raw DCT coe�cients per plane (B). The resulting coe�cients are
real numbers (albeit over a limited range), and so require considerably more
storage. Each coe�cient is then divided by the quantum step for that coe�-
cient (de�ned by a quantizing table QT = QT [1]; :::; QT [64]) and rounded to
the nearest integer to produce quantized coe�cients (C) (JPEG coe�cients).
This step (including rounding) is generally called quantization. Lossless entropy
coding further reduces the space needed to store the quantized coe�cients con-
siderably, and is the bulk of what is stored in .jpg �les (X). The \quality level"
of JPEG compression determines the magnitude of the quantum steps in the
quantizing table, which in turn determines the visual quality of the compressed
image after decoding. To decode a JPEG �le, the inverse DCT (IDCT) is applied
to the decompressed, dequantized coe�cients (i.e., the JPEG coe�cients, C, are
multiplied by their respective quanta to produce the integer multiples of the
quanta nearest to the original coe�cients, D) to obtain a raw bitmapped output
�le (E) in the spatial domain, whose pixel values are real numbers. These values
are then clamped (if they are less than the minimum value or greater than the
maximum value for the format used) and rounded to the nearest integer value
in the range [0::2n � 1] to produce the �nal output block (F).

Although the Discrete Cosine Transform is mathematically invertible (i.e.,
for a block A, IDCT (DCT (A) = A)), quantizing and dequantizing by any value
other than unity generally distorts the DCT coe�cients so greatly that, referring
to Figure 1, A may not be the same as F . Likewise, clamping and rounding
render the the process of decoding and then re-encoding imprecise, even when
the same quantizing table is used. That is, referring to Figure 1, C and C 0 (and
hence, D and D0) may not be identical, even if F 0 = F .

It is important to note that at any non-trivial quantization level, there are
many bitmap blocks that cannot be the output of JPEG decoding at all. We
will call the spatial domain blocks that are the result of decoding a set of JPEG
coe�cients for a given quantization table JPEG compatible blocks, or JPEG
blocks for short, and those that are not, JPEG incompatible, or non-JPEG
blocks.3

3 Note that blocks that are JPEG incompatible for one quantizing table may be JPEG
compatible for a di�erent quantizing table, and vice-versa.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

8x8 block in
spatial domain

(original image)

Discrete Cosine Transform
(DCT)

Spatial Domain Frequency Domain

Corresponding
64 DCT

coefficients

Quantized
DCT coefficients

(JPEG coef.)

quantization
B C

Corresponding
64 DCT

coefficients

quantization

8x8 JPEG
decoded block

8x8 raw block
in spatial domain

clamping &
rounding

clamping &
rounding

8x8 JPEG
decoded block

8x8 raw block
in spatial domain

E

F’

F D

Inverse DCT (IDCT)
F’’ E’

X

D’

(DCT)

A

B’ C’

Possibly
modified

block

Quantized
coefficients

Inverse DCT (IDCT)

Discrete Cosine Transform

entropy
coding

JPEG coefficients
Compressed

Dequantized

Dequantized

JPEG coefficents

JPEG coefficents

dequantization

dequantization

Fig. 1. JPEG Operation.

3 JPEG Compatibility Steganalysis

Fridrich, Goljan and Du [6] introduced an ingenious steganalysis technique that
determines whether a bitmap representation of an image derived from a JPEG
�le has been altered. If a bitmap image were derived from an image once stored
in JPEG format, their method can determine this in most cases, even if the low
order bits of the image have been manipulated after conversion to bitmap format.
Their method takes advantage of the last fact mentioned in the previous section:
not all spatial domain blocks can be the output of decoded JPEG coe�cient sets,
i.e., not all spatial blocks are JPEG blocks. Their steganalytical method �rst
determines that the bitmap was at one time stored in JPEG format, then recovers
the 8 � 8 JPEG block alignments and the best candidate for the quantization
table. It then detects those blocks that could not have been produced by the

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

JPEG decoding process. Since changing a single bit in a spatial block can cause a
JPEG block to become JPEG incompatible, this approach is extremely sensitive
to manipulation of images in the spatial domain; it can readily detect even
low payload size [15] steganographical embeddings that do not take the JPEG
characteristics into account, provided they manipulate bitmaps that were once
stored in JPEG form.

Spatial Domain Frequency Domain

Corresponding
64 DCT

coefficients

quantization

8x8 JPEG
decoded block

8x8 raw block
in spatial domain

clamping &
rounding

8x8 JPEG
decoded block

8x8 raw block
in spatial domain

clamping &
rounding

D1

neighbors of D
1 in dequantized coefficient space

...

Quantized
coefficients

Quantized
coefficients

neighbors of C
1 in quantized coefficient space

Dk

CkE1

EkFk

F1

B’

... ...

...

C1

Original
block

ne
ig

hb
or

s
of

 F
0

in
 s

pa
tia

l d
om

ai
n

DCT
F0

Dequantized
JPEG coefficients

IDCT

IDCT

JPEG coefficients
Dequantized

Fig. 2. JPEG-Compatible Neighbors of a Spatial Block.

As they note, their method has some limitations, the most notable being
the cases of blocks in which clamping has occurred (i.e., the JPEG decoding
intermediate block E held values less than �0:5 or greater than 255:5, for which
the rounding error is greater than 0:5), and when the JPEG quality is very high
(i.e., when the quantization table has very small values). In the former case, the
basic test they use for energy bounds does not apply, while in the latter, the
number of possible sets of DCT coe�cients they must test is prohibitively large
(although theoretically possible). In addition to these cases, there are some other
cases in which an image has been manipulated, but the manipulation will not
be detected by their method even though artifacts may be apparent to a human
observer.4 Nonetheless, any bitmapped �le that was once stored in JPEG format
that fails their test can only do so if it has been manipulated, and their test is

4 An example is given at the beginning of the next section.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

sensitive enough to detect even a single bit change in a bitmap �le. Hence their
test produces no false positives, but can produce some false negatives.

Any steganographic embedding that embeds data directly in the JPEG coef-
�cients will not be detected by JPEG compatibility steganalysis, as the decoded
spatial image will consist entirely of JPEG blocks. However, these embedding
methods use .jpg �les as the stego image storage format, so that the JPEG co-
e�cients are maintained without error after the embedding is performed. If a
bitmap image is produced for the stego image, then it must be re-encoded in
JPEG form in order to recover the JPEG coe�cients, which is a process likely
to introduce errors in the steganographic data extraction process. In the next
section, we present a steganographic spatial embedding method that is JPEG
compatible. In fact, the stego image may be stored in either bitmap format or
as a JPEG.

4 A Baseline Spatial Domain Stego embedding that

De�es JPEG Compatibility Steganalysis

This section presents our baseline version of a novel, topological approach that
may change many bits in the spatial �le, but will never be detected by JPEG
compatibility steganalysis; it will always produce a false negative. Extensions
will be explored in section 7. The basic idea is to manipulate the image in such
a way that all of the 8 � 8 blocks are valid outputs of the JPEG decoder, and
all the spatial blocks are \near" the original spatial blocks as well. Of course, a
�le that is the result of intermingling 8 � 8 blocks from two di�erent decoded
JPEG �les that both used the same quantization table would satisfy the �rst
condition, but that is likely to be easily detected by the human visual system
(HVS). The key is to be able to escape detection by either the HVS or machine,
which means making the result compatible both with JPEG and with the HVS.

This section will introduce the topological concept of neighbor, and will de�ne
\rich" and \poor" blocks according to the ability of the system to use them to
embed data. In the context of this discussion, neighbors of a block will not be the
surrounding blocks in the image �le (compressed or not), but will be other blocks
that are not much di�erent in their content from the block of interest (that is,
they are intended to be undetectably di�erent to the steganalyst). Those blocks
that are in e�ect indistinguishable from the block of interest will be called its
neighbors, and a block will be called rich if it and its neighbors can encode any
datum desired; otherwise it will be called poor.

Our baseline system stores only one bit of embedded data per JPEG block,
in 8-bit, grayscale images. It uses the LSB of the upper left pixel in the spatial
block to store the embedded data. A small, �xed size length �eld is used to
delimit the embedded data. As a �rst cut, if the bit is the desired value, then
we could leave the block alone. If the desired bit is the opposite of the original
value, then the system changes the JPEG block in such a way that the upper left
LSB is the desired value, but the modi�ed spatial block is still JPEG compatible.
However, as we will see, there is more to it than this.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

Encoding is done by going back to the quantized coe�cients for that JPEG
block and changing them slightly in a systematic way to search for a minimally
perturbed JPEG compatible block that embeds the desired bit (one of the Fj 's
in Figure 2), hence the topological concept of \nearby." This is depicted in
Figure 2, where B0 is the raw DCT coe�cient set for some block F0 of a cover
image, and D1 is the set of dequantized coe�cients nearest to B0.5 Note that B0

is a point in (continuous) raw DCT coe�cient space, while each Di is a point in
the subspace consisting of dequantized JPEG coe�cients (for the quantization
table in use). In other words, the neighbors Fi; i = 1; 2; :::; k of the spatial block
F0 must be blocks that are the decoded JPEG output of points near D1 in the
dequantized coe�cient block space. Thus, our maps are \continuous" (in the
topological sense).

The topological concept of nearness has to be de�ned in terms of both human
detection and machine detection, and this is the subject of continuing research.
The preliminary version presented here changes only one JPEG coe�cient at
a time by only one quantization step. In other words, it uses the L1 metric on
the points in the 64-dimensional quantized coe�cient space corresponding to the
spatial blocks, and a maximum distance of unity. (Note that this is di�erent from
inverting the LSB of the JPEG coe�cients, which only gives one neighbor per
coe�cient.) For most blocks, a change of one quantum for only one coe�cient
produces acceptable distortion for the HVS. This results in between 65 and 129
JPEG compatible neighbors6 for each block in the original image.

If there is no neighboring set of JPEG coe�cients whose spatial domain
image carries the desired datum, then the system could deal with this in a
number of ways. One is to treat this as an error in the stego channel and provide
error correction to handle it. Another is to provide some kind of signal that this
block is not to be used (that is, in the embedded data stream, insert a control
sequence in the bits preceding the unusable block(s) to indicate that it is (they
are) not to be used, then move the data that would have been encoded there
to usable blocks occurring after the unusable block or blocks). Yet another is to
provide a map of the locations of the unused blocks within the embedded data. A
similar approach is used in BPCS steganography [8] to identify blocks for which
the embedded data were transformed so they would be correctly identi�ed as
embedded data by the receiver. These approaches use up scarce payload space
of the steganographic encoding. A fourth approach trades o� computation at
both sender and especially the receiver for improved payload space. The sender

5 For quantized DCT coe�cients or for DCT coe�cient sets, dequantized or raw, we
will use the L1 metric to de�ne distances. D1 is the set of coe�cients of B

0 rounded
to the nearest multiple of the corresponding quantum in QT . The notion of neighbor
will be made precise in subsection 5.1.

6 Each of the 64 JPEG coe�cients may be changed by +1 or -1, except those that are
already extremal. Extremal coe�cients will only produce one neighbor, so including
the original block itself, the total number of neighbors is at most 129, and is reduced
from 129 by the number of extremal coe�cients. If the QT has very small values,
it is possible that some of the neighbors coincide, reducing this number further, but
for typical quantum values, this is unlikely.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

avoids unusable blocks in such a way that the receiver can tell which blocks the
sender could not use without the sender explicitly marking them. This is the
method our baseline system employs.

There are two criteria that must be met for this approach to work. First, the
receiver must be able to test each block that it receives to determine whether
it has been used to encode data or not. Second, if the receiver classi�es a block
as having been used to encode data, it must encode the correct datum. If the
set of neighbors that the sender explores to �nd a suitable block does not have
some block that could send any possible desired datum, then that block might
be considered to be inutile. Thus the sender and the receiver could agree that a
block can be used to encode data if and only if, for any possible datum, its set
of neighbors includes at least one block that can send that datum. We will call
these blocks `rich,' and those that do not satisfy this criterion `poor.'

However, for the receiver this decision is based on the block received, to wit,
the block with which the sender replaced the original block. This in turn means
that the sender can not just �nd any neighboring block that encodes the desired
datum (or leave a block alone if it already conveys the desired datum), but must
also test a candidate replacement block to see if the receiver would consider it
to have been used (i.e., would �nd it to be rich). That is, the neighborhoods are
not a partition, and rich blocks are not guaranteed to have only rich neighbors.
Otherwise, if the sender chooses the original or a neighboring block to encode a
datum, but that chosen block is not rich (i.e., there is some datum that its set
of neighbors can not encode), then the receiver will mistakenly assume that the
replacement block was not used and will skip it.

As long as there is at least one rich block that conveys the desired datum
among the neighbors of the original block, then that block can be used to replace
the original (even if it conveys the same data, so that an original but poor block
that conveys the correct data can be replaced by one of its rich neighbors that
conveys the same data, if one exists). Otherwise, the block cannot be used by
the sender. However, if the original block is rich, and hence appears to be usable,
then it must not be left untouched or else the receiver will classify it as used
and include the datum it encodes in the received stream in error. Instead, the
original block must be replaced by one of its poor neighbors that will be classi�ed
as unused by the receiver, regardless of what datum it may encode. These notions
are formalized in the next section.

5 Generalization and Formalization of Our Stego

Embedding Technique

This section describes formally how our method hides an arbitrary embedded
data string in the spatial realization of a JPEG image. The embedded data must
be self-delimiting in order for the receiver to know where it ends, so at least this
amount of preprocessing must be done prior to the embedding described. In
addition, the embedded data may �rst be encrypted, and it may have a frame
check sequence (FCS) added if unusable blocks are rare to save the receiver from

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

costly tests, allowing it to assume that all the blocks were used unless the FCS
fails.

Let the embedded data string (after encryption, end delimitation, frame check
sequence if desired, etc.) be s = s1; s2; :::; sK . The data are all from a �nite
domain � = f�1; �2; :::; �Ng, and si 2 � for i = 1; 2; :::;K. Let � : �� ! f0; 1g
be a termination detector for the embedded string, so that �(s1; s2; :::; sj) = 0
for all j = 1; 2; :::;K � 1, and �(s1; s2; :::; sK) = 1. Let S = [0::2m � 1]64 be
the set of 8 � 8 spatial domain blocks with m bits per pixel (whether they are
JPEG compatible or not), and let SQT � S be the JPEG compatible spatial
blocks for a given quantization table QT . Let � extract the embedded data from
a spatial block F ,

� : S ! �

We polymorphically extend this to sets of blocks � � 2S by

�(�)
def
= f�(
) j
 2 �g:

Let � be a pseudo-metric7 on SQT ,

� : SQT � SQT ! R
+ [f0g:

Let N�(F) be the set of JPEG compatible neighbors of JPEG compatible block
F according to the pseudo-metric � and threshold � based on some acceptable
distortion level (� and � are known to both sender and receiver),

N�(F)
def
= fF 0 2 SQT j �(F; F

0) < �g;

where QT is the quantizing table for the image of which F is one block. The
N�(F) may be thought of as a basis for the \topology," however our technique
only uses a �xed � which is chosen small enough so that the HVS cannot detect
our stego embedding technique. Neighborhoods can likewise be de�ned for JPEG
coe�cients and for dequantized coe�cients for a particular quantizing table (by
pushing the pseudo-metric forward).

If F 0 2 N�(F), we say that F 0 is a neighbor of F (the � is understood and
not explicitly mentioned for notational convenience). Being a neighbor is both
re
exive and symmetric. Now we can make our de�nitions from the previous
section precise.

5.1 De�nitions

De�nition: A block F is called rich if and only if

�(N�(F)) = �;

7 That is F = F 0
) �(F; F 0) = 0 but not necessarily the converse. See Chap. 9, Sec.

10 of [3]. This is needed because nonlinearities introduced by rounding in both the
quantization step and in decoding can possibly cause two distinct, JPEG compatible,
spatial blocks to have distance 0. For most JPEG quantizing tables, however, � is
in fact a true metric.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

that is, for every datum � 2 �, F has at least one neighbor, F 0, that encodes �,
and we write F 2 R (the set of rich blocks). Otherwise, F is poor.
De�nition: Block F is usable if and only if for every datum � 2 �, F has at
least one neighbor that both encodes � and is rich:

�(N�(F) \ R) = � :

If F is not usable, then it is unusable. (In Section 7, we relax this de�nition
somewhat.) Of course any usable block is rich, but the converse need not hold.
Claim 0: If block F is unusable then either F is poor, or one its neighbors is
poor.
Proof of Claim 0: F is either rich or poor. If F is poor we are done. Assume
then that F is rich, therefore one can always �nd a neighbor of F that encodes �
for any � 2 �. If every such neighbor were rich, then F would be usable, which
it is not. Therefore, when F is rich, there exists some neighbor of F that is poor.

5.2 Algorithm in brief

The key to our method is that the receiver only considers rich blocks for decoding.

The receiver ignores poor blocks | it simply skips over them. If the transmitter
has a poor block it is sent and the receiver ignores it. Thus, no information is
passed if a poor block is transmitted.

{ transmitter has usable block (F is usable):
� If F encodes the information that the transmitter wishes to send, the
transmitter leaves F alone and F is sent. The receiver gets (rich) F ,
decodes it and gets the correct information.

� If F does not encode the correct information, the transmitter replaces it
with a rich neighbor F 0 that does encode the correct information. The
replacement ability follows from the de�nition of usable. Since F 0 is a
neighbor of F the deviation is small and the HVS does not detect the
switch.

{ transmitter has unusable block (F is unusable):
� If F is poor, the transmitter leaves F alone, F is sent, and the receiver
ignores F . No information is transferred.

� If F is rich, the transmitter changes it to a neighbor F 0 that is poor. The
ability to do this follows from Claim 0. Block F 0 is substituted for block
F , the receiver ignores F 0 since it is poor, and no information is passed.
Since F 0 is a neighbor of F the deviation is small and the HVS does not
detect the switch.

Note that when dealing with an unusable block that the algorithm may waste
payload. For example, if F is unusable and poor, F may still have a rich neighbor
that encodes the desired information. See section 7 for further discussion. The
advantage of the algorithm as given above is that it is non-adaptive. By this we
mean that the payload size is independent of the data that we wish to send. If
we modify the algorithm as suggested, the payload can vary depending on the
data that we are sending.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

5.3 Algorithm in detail

To hide the embedded data, the sender �rst must �nd a JPEG image cover �le
I with at least K usable blocks. (Since the sender has great
exibility here, it
should not be di�cult to �nd such an image if the total number of blocks M
is su�ciently larger than K, � is not too large, and � is not too small.) Let
the spatial domain JPEG blocks of the cover �le be I1; I2; :::IM , and let � be a
permutation of the block indices known to the sender and receiver so that the
blocks of I are considered in the permuted order, I�(1); I�(2); :::I�(M). (Note that
the order in which blocks of I are tested for use must be known to both sender
and receiver, so that the receiver extracts only the blocks that were used and
extracts them in order. This permutation can be part of the key material or
derived from it. Our baseline system scans blocks in left-to-right, top-to-bottom
order.) Let the usable blocks of the permuted order of I be V = V1; V2; :::; VM1

,
and let the unusable blocks of the permuted order of I that are interspersed with
V be U = U1; U2; :::; UM2

. ThusM =M1+M2,M1 � K, and either I�(1) = V1
or I�(1) = U1.

For the ith datum, si, i = 1; 2; :::;K, the sender will pick some rich block
V 0

i 2 N�(Vi) such that �(V 0

i) = si. The sender will then replace each usable
block Vi with block V 0

i in forming the stego image I 0 (note that if �(Vi) = si
and Vi 2 R, then V 0

i = Vi, i.e., the block need not be replaced since the receiver
will correctly decode it already).

For each unusable block Ui of I that is interspersed with the blocks used to
embed the embedded data, the sender will either leave Ui alone in forming I 0 if
Ui is poor, or will replace Ui with a poor neighbor U 0

i otherwise. Claim 0 tells
us we can do this.

The receiver then tests the blocks of the stego image I 0 in the prede�ned
order �(1); �(2); :::, discarding the poor blocks U 0

1; U
0

2; ::: and extracting the rich
blocks of I 0 (note that they do not have to be usable), V 0

1 ; V
0

2 ; :::; V
0

K to extract
the embedded data, s0i = �(V 0

i). This continues until the last datum, s0K ,
is extracted, and s0 is found to be complete by the self-delimiting mechanism,
�(s0) = 1. The remainder of I 0 is ignored.

5.4 Claims

Claim 1: JPEG compatibility steganalysis will not detect this stego embedding
method.

Proof of Claim 1: Since every block in I 0 is a valid JPEG block (of course
with the same quantization table), the JPEG based steganalysis can not detect
that it has been altered.

Note that if the pseudo-metric �/threshold � are not de�ned/chosen prop-
erly, there may be other means (even human inspection of the image) that could
detect artifacts indicating that I 0 is a stego image.

Claim 2: Any usable block F has a neighbor that can encode any datum �� in
such a way that the receiver will accept it.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

Proof of Claim 2: F is usable () 8 � 2 �; 9F 0 2 N�(F) \ R; � = �(F 0)
by de�nition. In particular, 9 F � 2 N�(F) \ R such that �� = �(F �). Since
F � 2 R, the receiver will classify the corresponding block Ii of I as rich, and
will extract the datum �� from it.

Claim 3: Any unusable block F will be modi�ed (if necessary) in forming the
stego image I 0 so that the receiver rejects it.

Proof of Claim 3: By Claim 0, either F or one of its neighbors is poor. If F
is poor, leave it alone and the receiver rejects it for decoding. If F is rich we
replace it with one of its poor neighbors, which the receiver then rejects.

Claim 4: Using the stego embedding described above, a cover �le I with at
least K usable blocks can embed any self-delimited data string s = s1; s2; :::; sK
correctly.

Proof of Claim 4:While space limitations preclude us from presenting the full
proof here, it is easily shown by induction on the length of the embedded string
and is in the appendix.

6 Results

We have implemented the baseline version of our method. As discussed in section
4, this initial version is very rudimentary and is essentially a proof of concept.
It does, however, yield very good results that are resistant to detection. Since
the changes to the JPEG coe�cients are minimal (at most one quantum of one
coe�cient), and the quanta have been chosen to more or less equalize the e�ect
on the HVS, the stego image is indistinguishable from the cover by humans.
Changes to the statistics of the JPEG coe�cients are minimal by design. An
initial version had a bias toward incrementing the coe�cients, which caused the
number of JPEG coe�cients with a value of 1 to outnumber signi�cantly those
with a value of -1. Since this asymmetry could have been detected easily, we
removed this bias in our baseline system. In both versions, the JPEG coe�cient
frequencies decreased away from zero, and were generally concave upward, and
so would pass the test of Westfeld et al. [25]. Further, although there are typically
a large number of zero coe�cients that are changed (since these predominate),
the relative number is small (usually around half of a percent). Thus, we expect
that statistical tests (such as correlation toward one) will fail to discern an
abnormality. An example of the baseline embedding for a particular block is
given in Figure 3. (We see little point in taking up space showing two spatial
images that look the same when printed at poor resolution.) A speci�c JPEG
coe�cient block results in the spatial block (cover image) on the left of Figure 3.
We desire that the LSB of the upper left pixel be 0 (which it is not). Therefore we
adjust the JPEG coe�cient block by one quantum (we change the sixth JPEG
coe�cient AC0;2 from 0 to -1), which results in the spatial block (stego image)
on the right (in which the LSB of the upper left pixel is 0).

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

Original Spatial Block

137 137 137 135 132 127 123 121
136 136 135 134 131 128 124 122
134 134 133 133 131 128 126 125
132 132 131 131 130 129 127 127
131 131 130 129 128 128 128 128
132 131 129 128 127 127 127 128
133 132 129 127 126 126 126 127
134 132 129 127 125 125 125 126

Spatial Block after Embedding

136 137 137 136 133 128 123 119
135 135 136 135 133 128 124 121
132 133 134 134 132 129 126 123
131 131 132 132 131 129 127 126
130 130 130 130 130 129 127 127
131 130 130 129 128 127 127 127
132 131 130 128 127 126 126 126
133 132 130 128 126 125 125 125

Fig. 3. Cover image spatial block and stego image spatial block

Our baseline version runs somewhat slowly due to the number of tests8 that
are made and the computational burden of each test. With typical JPEG �les,
however, and encoding only one bit per usable block, the number of tests it has
to make is small since it only has to �nd neighboring blocks that encode both
values, and with typical quanta, these are quickly found. The payload is small
| only one bit per usable 8�8 block, but the likelihood of detection is very low.
Although this already small number may be decreased by the number of poor
blocks found in the cover image, with typical JPEG �les we �nd very few poor
blocks, so this is not an issue.

7 Extensions

Although the current de�nition of usable does not depend on the datum that the
block is intended to encode (and thus is independent of the embedded data s),
there may be greater payload space available if the de�nition is loosened to be
speci�c to a particular datum � (refer to the discussion at the end of subsection
5.2).
De�nition: A block F is usable for datum � if and only if F has at least one
neighbor that both encodes � and is rich:

f�g \ �(N�(F) \R) 6= ;:

This allows a block that is not usable itself to be usable for � if it has a rich
neighbor, possibly itself, that encodes the desired datum. However, it should
be noted that this makes the embedding adaptive to both the image and the
embedded data, so that the payload size becomes dependent on the embedded
data (as well as the cover image|same as before). The degree to which this
increases the payload space by decreasing the probability of encountering an
unusable block is worthy of exploration.

If unusable blocks are rarely encountered, then it may be desirable to have
an error detection code appended to the whole message so that the receiver can
determine if there were any unusable blocks or not, and search for them only if

8 It also does much computation to gather statistics that would not be needed simply
to perform embedding or extraction.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

there were. This is relatively inexpensive in terms of space (a short CRC will do),
and only if the test fails must the receiver perform the more expensive block-
by-block test for usability. The additional work required of the receiver to check
the CRC is minimal, and all of the decoding work it performs would have to be
done anyway, so this extension is likely to provide a signi�cant gain in decoding
speed at very little cost.

Our baseline system only works on grayscale images; it is easily extended
to color (multichannel) images. While currently the stego image is stored, sent,
or posted in bitmap format (e.g., TIFF, BMP), we have enhanced the system
with an option to store the stego image in JPEG format as is done in spread
spectrum steganographic techniques [13, 20] and other JPEG-based systems such
as Jsteg or F5 [25]. This is because our modi�cations are performed on the
quantized coe�cient blocks, and then we choose from among the corresponding
spatial blocks. It does not su�ce simply to reencode the bitmap stego image, as
the reencoding may not produce decoded output identical to the stego image.
Instead, it is necessary to remember the JPEG coe�cients for the replacement
blocks, and store these in the format required.

Provos has described methods for detecting information hidden in the JPEG
coe�cients [21, 22]. In these works, the statistical characteristics of the JPEG
coe�cients are analyzed to determine if there has been tampering. Based on the
results reported, it is unlikely that the small changes our baseline method makes
to the JPEG coe�cients will be detected (at most one JPEG coe�cient per
block is changed). Even so, the
exibility a�orded by often having more than
one choice for the coe�cient set with which to encode a datum should allow
selection based on minimum disturbance of the coe�cient statistics. This will
require further investigation.

Currently, the search order and the data extraction function � are �xed. Use
of a key may provide a means to make this system satisfy Kerckho�s' principle
[2], so that even with knowledge that the system is being used on a subset of
images, without the key, detection of which of the images are stego images and
which are not is practically impossible. One set of issues as yet to be resolved
includes the best way to use the key to de�ne the search order � of blocks in I
(and I 0) and the best way to use the key to de�ne � (which may be parametrized
to be �i). The key may also contain information used to set �, � and �.

However, the main question that remains is how better to construct the
pseudo-metric � and how to pick the threshold � that are used to de�ne the
neighborhood N�. Our baseline system uses only those JPEG blocks that are
the result of decoding the vectors of quantized DCT coe�cients that di�er from
the quantized DCT coe�cient set of the original block Ij in only one place i, and
there by only unity. That is, we use the L1 metric in the JPEG coe�cient space
with � = 1 + �. This usually provides 129 neighbors for each block (including
the block itself), but depending on the number of extremal coe�cients, the
total may range between between 65 and 129 candidates to replace the block.
In most cases, this should be su�cient to encode more than one bit per usable
block reliably. We expect that for most blocks and coe�cients, we will be able

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

to change single coe�cients by more than one quantum, and will be able to
change more than one coe�cient simultaneously without introducing humanly
detectable artifacts, resulting in a combinatorial number of acceptable neighbors
of each original block. A larger neighborhood will allow the approach to encode
a larger amount of data per block than a single bit. While a larger � allows more
bits to be stored per usable block, at the same time it reduces the probability
that a block is usable for a �xed �. Generally, it is of interest to determine
what is the best balance between the size of the data set �, the pseudo-metric
�, and the threshold �, so that the payload space can be maximized without
detection. The pseudo-metric and threshold must be set at least so that the
artifacts produced by the replacement of the blocks in the stego image are not
obvious to the trained human eye.

The baseline pseudo-metric makes no distinction among the DCT coe�cients.
However, there are two good reasons it might do so. First, the HVS has di�erent
sensitivities to the di�erent coe�cients (that is, one can generally change the
higher frequency components by greater values than the lower frequency com-
ponents without human detection). The quantizing tables take this into account
by using larger quanta for coe�cients to which the HVS is less sensitive, and
so the baseline pseudo-metric just relies upon this fact to equalize the changes
relative to the HVS. It may be better for the pseudo-metric to consider this more
directly. Second, with reasonable compression, many of the quantized DCT co-
e�cients are zero, which is where much of the compression gain is made during
entropy coding. If these coe�cients are modi�ed, it may be easier for machine
detection to discover tampering inconsistent with typical JPEG images (even
though the image is entirely JPEG compatible and the overall statistics still
appear normal). For these reasons, it may be desirable to restrict the ways in
which the JPEG coe�cients are changed in a more sophisticated manner.

Beyond this, adaptive encodings should be considered [8, 11, 18]. It would
be of interest to explore the degree to which the threshold (and perhaps even
the pseudo-metric) may be adapted to each block Ii, so that blocks that contain
su�cient amounts of clutter can encode more embedded data, while blocks whose
alteration would be more easily detected may encode less data or even no data.
The complexity measure used by Kawaguchi et al. may be of use for this [9].
Here, the nature of the block Ii being considered for use a�ects the threshold �i
and possibly the pseudo-metric �i. Care must be taken, since these must also
apply to the replacement block, which is all that the receiver sees, and from
which the receiver must be able to determine �i and �i.

It would also be useful to extend this approach to one that is robust in the
presence of noise and other alterations to the stego image. One interesting twist
is that JPEG-compatibility steganalysis can be used as error correction for some
noise introduced in the spatial domain. Using this approach, the original (JPEG-
compatible) spatial image can be restored, so that an error-free version of the
stego image can be extracted.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

8 Conclusions

This paper has brie
y discussed JPEG encoding, and the method used by
Fridrich et al. to detect tampering with JPEG based bitmap images. It then
described a stego embedding method to circumvent detection by the JPEG com-
patible steganalysis method, including proofs of correctness for the embedding
method. While our baseline method is both low rate (1 bit per block) and is easily
detectable if the approach is known, it is only a proof of concept. More advanced
versions improve the data rate, e�ciency, and decrease the detectability of the
system (perhaps to the point of satisfying Kerckho�s' principle).

One might want to use an improved version of this method to store relatively
small amounts of data in a relatively undetectable way, or if it is desired to store
them in spatial form. Since only one (or a few) coe�cients are changed per block,
the overall statistical changes will be small, as will be the visual distortion (rela-
tive to the distortions already present in the compressed cover, assuming that the
QT is balanced in the e�ect of one quantum change on human perceptibility).
The steganalyst is not likely to detect changes in either the frequency domain
or the spatial domain, even using extremely sensitive detection methods.

Also, our method can be extended as a steganographic method for �les stored
in the JPEG format, and detectability in the frequency domain is considered
in follow-on work. Equally as important, topological notions of pseudo-metrics
and neighborhoods are used to de�ne its operation and as a perspective on
the problem. Finally, some extensions to the work are proposed to increase its
payload space or decrease the likelihood that an image is correctly detected by
steganalysis.

9 Acknowledgments

We thank the anonymous referees and the program chair, Fabien Petitcolas, for
their insightful comments and assistance.

References

1. R. Anderson. Stretching the limits of steganography. In R. Anderson, editor,
Information Hiding 1996, volume LNCS 1174, pages 39{48. Springer, 1996.

2. R. Anderson. Security Engineering. Wiley, 2001.
3. J. Dugundji. Topology. Allyn and Bacon, 1976.
4. J. J. Eggers, R. B�auml, and B. Girod. A communications approach to image

steganography. In SPIE Electronic Imaging 2002, Security and Watermarking of
Multimedia Contents IV, volume 4675, pages 26{37, San Jose, USA, Jan. 2002.

5. J. Fridrich. Methods for detecting changes in digital images. In 6th IEEE Inter-
national Workshop on Intelligent Signal Processing and Communication Systems
(ISPACS'98), Melbourne, Australia, 4-6 November 1998.

6. J. Fridrich, M. Goljan, and R. Du. Steganalysis based on JPEG compatibility.
In A. Tescher, B. Vasudev, and Jr. V.M. Bove, editors, SPIE Vol. 4518, Special
session on Theoretical and Practical Issues in Digital Watermarking and Data

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

Hiding, SPIE Multimedia Systems and Applications IV, pages 275{280, Denver,
CO, 20-24 August 1998.

7. N. F. Johnson, Z. Duric, and S. Jajodia. Information hiding: Steganography and
watermarking|attacks and countermeasures. In Advances in Information Security
1. Kluwer Academic Publishers, 2001.

8. E. Kawaguchi and R. O. Eason. The principle and applications of bpcs-
steganography. In SPIE International Symposium on Voice, Video, and Data
Communications: Multimedia Systems and Applications, pages 464{473, Boston,
MA, November 2-4 1998.

9. E. Kawaguchi and M. Niimi. Modeling digital image into informative and noise-like
regions by complexity measure. In Information Modeling and Knowledge Bases IX,
pages 255{265. IOS Press, April 1998.

10. C. Kurak and J. McHugh. A cautionary note on image downgrading. In Computer
Security Applications Conference, pages 153{159, San Antonio, Dec. 1992.

11. Y. Lee and L. Chen. An adaptive image steganographic model based on minimum-
error lsb replacement. InNinth National Conference on Information Security, pages
8{15, Taichung, Taiwan, 14-15 May 1999.

12. Y. Lee and L. Chen. A high capacity image steganographic model. In IEE Vision,
Image and Signal Processing, 2000.

13. L. M. Marvel, C. G. Boncelet Jr., and C. T. Retter. Spread spectrum image
steganography. IEEE Trans. Image Processing, 8:1075{1083, August 1999.

14. L.M. Marvel, G.W. Hartwig, and C. Boncelet. Compression-compatible fragile and
semi-fragile tamper detection. In SPIE EI Photonics West, pages 131{139, San
Jose, CA, 2000.

15. I. S. Moskowitz, L. Chang, and R. E. Newman. Capacity is the wrong paradigm.
In New Security Paradigms Workshop, Virginia Beach, VA, USA, September 2002.

16. I. S. Moskowitz, N. F. Johnson, and M. Jacobs. A detection study of an NRL
steganographic method. NRL Memorandum Report NRL/MR/5540{02-8635,
Naval Research Laboratory, Code 5540, August 16 2002.

17. I. S. Moskowitz, G. E. Longdon, and L. Chang. A new paradigm hidden in
steganography. In New Security Paradigms Workshop, pages 12{22, Ballycotton,
County Cork, Ireland, Sept 2000. ACM (also appears in \The Privacy Papers" ed.
R Herold, Auerbach Press 2002).

18. M. Niimi, H. Noda, and E. Kawaguchi. An image embedding in image by a com-
plexity based region segmentation method. In ICIP, volume 3, pages 74{77, 1997.

19. W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Stan-
dard. Van Nostrand Reinhold, New York, 1993.

20. F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding { a
survey. Proceedings of the IEEE, 87(7):1062{1078, July 1999.

21. N. Provos. Defending against statistical steganalysis. In 10th USENIX Security
Symposium, pages 323{335, August 2001.

22. N. Provos. Probabilistic methods for improving information hiding. Technical
Report 01-1, CITI, University of Michigan, January 2001.

23. N. Provos and P. Honeyman. Detecting steganographic content on the internet.
Technical Report 01-1, CITI, University of Michigan, August 2001.

24. G. Strang. The discrete cosine transform. SIAM Review, 41(1):135{147, 1999.
25. A. Westfeld. F5 | a steganographic algorithm: High capacity despite better ste-

ganalysis. In I.S. Moskowitz (Ed.) Information Hiding, LNCS 2137, IH 2001, pages
289{302. Springer, 2001.

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

A Proof of Claim 4

Claim 4: Using the stego embedding described in subsection 5.3, a cover �le
I with at least K usable blocks can embed any self-delimited data string s =
s1; s2; :::; sK correctly.
Proof of Claim 4: The sender tests each block of the cover image I in the
�-permuted order I�(1); I�(2); ::: until K usable blocks have been found. Each
usable block Vi encodes datum si by replacing it (if necessary) with block V 0

i

in the stego image I 0, and each unusable block Ui that comes before VK in I is
replaced (if necessary) with U 0

i 62 R. The receiver tests each block of I 0 in the
same order that the sender tests (and replaces if necessary) it, I 01; I

0

2; :::, until all
of the embedded data s01; s

0

2; :::; s
0

K have been decoded. We will prove that the
string extracted by the receiver is the same as that embedded by the sender,
assuming there is no noise in the transmission process, by induction on l, the
number blocks of I 0 tested by the receiver.
Inductive Hypothesis: Let n(l) be the number of usable blocks of I that occur
in the �rst l blocks of I , that is, Vn(l) is Il0 for some l0 � l, and 8l00; l0 < l00 �

l; Il00 = Uj for some j. For all i < n(l � 1), the ith decoded datum s0i = �(V 0

i) is
identical to the ith encoded datum, si.
Base Case: The base case, i = 0, is trivially true, and initially the decoded
data string s0[1::0] is empty, s0[1::0] = �.
Inductive Step: The inductive step will assume the hypothesis is true for l�1,
and will show it to hold for l. Suppose that l�1 blocks of I have been tested, with
j = n(l�1) of them classi�ed as rich (whose datum was extracted) and l� j�1
of them classi�ed as poor (and skipped). Then at this point the output data
string is s0[1::j] = s01; s

0

2; :::; s
0

j , and by the inductive hypothesis, 8i � j; s0i = si.
The receiver then tests the next block I 0

�(l) to determine if it is rich.

If I 0
�(l) 2 R then the receiver extracts datum s0j+1 = �(I 0

�(l)) and appends

it to s0[0::j] to produce s0[0::j + 1]. I 0
�(l) 2 R) I 0

�(l) = V 0

j+1 since the sender

leaves a rich block in I 0 before the end of s if and only if it encodes data, and
the order in which the sender and receiver test and use blocks is the same. Thus
s0j+1 = �(I 0

�(l)) = �(V 0

j+1) = sj+1 and the inductive hypothesis holds for l.

Otherwise I 0
�(l) is poor, hence I

0

�(l) is U
0

l�j and is skipped. This only happens

before the end of s if the sender places a poor block U 0

l�j 62 R in I 0 that must
be discarded by the receiver. In this case, the partially extracted string remains
unchanged, and n(l) = n(l� 1) = j so the inductive hypothesis still holds for
l.

If the block were rich and another datum were appended to s0[0::j], the
receiver tests s0[0::j + 1] to determine if it is complete (i.e., �(s0[0::j + 1]) = 1
and the self-delimitation mechanism indicates that all of s has been extracted).
If this is the case, then the receiver skips the rest of I 0 and outputs s0[1::j +
1] = s01; s

0

2; :::; s
0

K = s1; s2; :::; sK , since the inductive hypothesis holds for
l = K and no pre�x of the self-delimiting data s tests true for completeness (i.e.,
8i < K; �(s[1::i]) = 0).

IH
 2

00
2

 P
RO

CEE
DIN

G
S_

ve
r ,

 O
ct

 2
00

2,
 N

et
he

rla
nd

s

